Cucumber powdery mildew detection using hyperspectral data

Author:

Fernández Claudio I.1,Leblon Brigitte1,Wang Jinfei2,Haddadi Ata3,Wang Keri3

Affiliation:

1. Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.

2. Department of Geography and Environment, University of Western Ontario, London, N6G 2V4, Canada.

3. A&L Canada Laboratories, London, N5V 3P5, Canada.

Abstract

This study aimed to understand the spectral changes induced by Podosphaera xanthii, the causal agent of powdery mildew, in cucumber leaves from the moment of inoculation until visible symptoms are apparent. A principal component analysis (PCA) was applied to the spectra to assess the spectral separability between healthy and infected leaves. A spectral ratio between infected and healthy leaf spectra was used to determine the best wavelengths for detecting the disease. Additionally, the spectra were used to compute two spectral variables [i.e., the red-well point (RWP) and the red-edge inflexion point (REP)]. A linear support vector machine (SVM) classifier was applied to certain spectral features to assess how well these features can separate the infected leaves from the healthy ones. The PCA showed that a good separability could be achieved from 4 days post-inoculation (DPI). The best model to fit the RWP and REP wavelengths corresponded to a linear model. The linear model had a higher adjusted R2 for the infected leaves than for the healthy leaves. The SVM trained with five first principal components scores achieved an overall accuracy of 95% at 4 DPI (i.e., two days before the visible symptoms). With the RWP and REP parameters, the SVM accuracy increased as a function of the day of inoculation, reaching 89% and 86%, respectively, when symptoms were visible at 6 DPI. Further research must consider a higher number of samples and more temporal repetitions of the experiment.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3