Breeding indicators for high-yielding field pea under normal and heat stress environments

Author:

Huang Shaoming1ORCID,Gali Krishna K.1,Arganosa Gene C.1,Tar᾿an Bunyamin1,Bueckert Rosalind A.1,Warkentin Thomas D.1ORCID

Affiliation:

1. Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada

Abstract

The warming Canadian summers have become a major abiotic stress to crops, including pea. In the past decade, attempts were made in the understanding of heat stress effect and genomic mapping for heat-responsive traits in field pea. In this study, a new recombinant inbred line population (PR-24) consisting of 39 lines was tested in 6 trials in the summers of 2020 (near normal weather conditions) and 2021 (hot/dry conditions). PR-24 was phenotyped for days to flowering (DTF), days to maturity, plant height, lodging, yield components, plot yield, and seed quality traits. Plant height could be an effective indicator for yield prediction, because its correlation with plot yield was significantly positive in all six trials despite varying degrees of heat and drought stress. Under normal summer weather conditions in 2020, relatively late maturity was correlated with greater seed yield; under heat/drought stress conditions in 2021, successful pod development on the main stem was important for final plot yield. Linkage mapping was used to dissect the genomic regions associated with the measured traits. Four QTLs were identified over multiple trials, one each for DTF (chromosome 7), reproductive node number (chromosome 5), pod number (chromosome 2), and seed protein concentration (chromosome 5). Furthermore, two indices, i.e., stress tolerance index and geometric mean yield, previously used in drought tolerance assessment were validated as useful criteria for heat tolerance assessment in this study.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3