Clubroot resistance in canola and brassica vegetable cultivars in Ontario, Canada

Author:

Drury Sarah C.1,Gossen Bruce D.2,McDonald Mary Ruth1

Affiliation:

1. University of Guelph, Department of Plant Agriculture, Guelph, ON N1G 2W1, Canada.

2. Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada.

Abstract

Clubroot, caused by the obligate pathogen Plasmodiophora brassicae Woronin, has been present on brassica vegetables in Ontario for decades, but was only recently identified on canola (Brassica napus L.). Once P. brassicae is present in a field, eradication is difficult, but resistant cultivars can provide effective management. Pathotype 6 has been the predominant pathotype on vegetable crops for decades, but pathotype 2 is predominant in canola fields in Ontario. Field trials were used to assess the reaction of selected canola and vegetable Brassica cultivars to pathotype 2, and controlled environment studies were conducted to evaluate the reaction of the same cultivars to pathotypes 2 and 6. Four canola cultivars with putative clubroot resistance were compared with two cultivars that were expected to be susceptible and three susceptible control cultivars. Several brassica vegetables were assessed: cabbage, cauliflower, broccoli, napa cabbage, rutabaga, and Shanghai pak choi (a susceptible control). The canola cultivars marketed as resistant were highly resistant in both the field and growth room trials. The canola cultivars not marketed as resistant were susceptible to pathotype 2, as expected. All of the canola cultivars were resistant to pathotype 6. The vegetable cultivars marketed as resistant or tolerant were resistant to pathotype 6 and most were resistant to pathotype 2. A putative resistant cultivar of cabbage and one of broccoli were resistant to pathotype 6 but susceptible to pathotype 2. Clubroot consistently reduced fresh shoot weight in susceptible cultivars of canola and brassica vegetables relative to resistant cultivars.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3