Main factors affecting nutrient and water use efficiencies in spring canola in North America: a review of literature and analysis

Author:

Liyanage Dilumi W. K.1,Bandara Manjula S.2,Konschuh Michele N.1

Affiliation:

1. Department of Biological Sciences, University of Lethbridge, Lethbridge, T1K 3M4, AB, Canada

2. MCB Agric-Research Consulting, Brooks, AB, Canada

Abstract

Improving nutrient and water use efficiencies by optimizing field management practices are important strategies to increase economic and environmental sustainability of canola production in North America. The objective of this study was to review recent research publications and quantitatively assess the impact of field management practices on the efficiency of water and selected macronutrients [nitrogen (N) and sulfur (S)] in canola and to identify the most effective cultural practices for improved efficiencies. The results showed that, overall, the addition of N and S inputs in studies across North America increased yield but had a negative impact on nitrogen use efficiency (NUE) and sulfur use efficiency (SUE) compared with corresponding controls. Split-applied N in spring can improve NUE, but these improvements are mostly dependent on the soil moisture content. SUE is improved when N is supplied to complement the S application. Sulfate forms of S are more readily available and should be applied early in the season, whereas elemental S must be applied in the fall to improve SUE. Maintenance of adequate soil moisture conditions during the reproductive phase of the canola crop improves water use efficiency (WUE). Supplementary irrigation improves SUE, but most canola crops are grown under rain-fed conditions in North America. Maintaining tall stubble until spring and then incorporating it with N improved WUE in canola. In summary, our analyses suggest that further research is required on the integration of canola genotypes with improved nutrient and water use efficiencies and effective management.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3