Ultraviolet-C irradiation has no short-term, direct effects on cyclamen mite (Phytonemus pallidus (Banks)) in strawberry

Author:

Renkema Justin M.1ORCID,Takeda Fumiomi2,Janisiewicz Wojciech2

Affiliation:

1. Agriculture and Agri-Food Canada, London Research and Development Centre – Vineland Campus, Vineland Station, ON, Canada

2. United States Department of Agriculture – Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA

Abstract

Cyclamen mite is a nearly global pest of strawberry, inhabiting concealed spaces within folded leaves and flower buds emerging from plant crowns. It feeds on new plant tissue causing leaf discoloration and deformation, stunted plants, fruit bronzing and cracking, and yield losses at high population levels. Because ultraviolet-C (UV-C) irradiation is a promising new tool for disease and pest management in strawberry, and because there are few control options for cyclamen mite, we tested the direct, short-term effects of UV-C on cyclamen mite populations in potted strawberry plants in a controlled environment. Results from three experiments showed few differences in cyclamen mite populations on controls versus plants treated with UV-C (0.237 W m−1) for 3 or 4 weeks. In the second experiment, using a different strawberry cultivar and directing the UV-C from above the plant crown only, there was indication of a mild effect that may be due to some direct mortality and/or indirectly to plant defenses. However, longer-term studies will need to be conducted to determine whether pre-infestation exposure to UV-C can enable strawberry plants to better resist or tolerate cyclamen mite populations. Direct mortality did not occur as in previous experiments with pests, like twospotted spider mite, that live primarily on opened leaves.

Funder

Agriculture and Agri-Food Canada

Berry Gardens

Agricultural Research Service of the United States Department of Agriculture

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3