Effect of nanosized calcium and magnesium particles on absorption in peach tree leaves

Author:

Park Jae-Ryoung1,Jang Yoon-Hee1,Chung Il Kyung2,Kim Kyung-Min3

Affiliation:

1. Kyungpook National University, 34986, Daegu, Daegu, Korea (the Republic of);

2. Catholic University of Daegu, 37981, Gyeongsan, Gyeongsangbuk-do, Korea (the Republic of);

3. Kyungpook National University, 34986, Daegu, Korea (the Republic of), 41566;

Abstract

Plants require a variety of elements to grow. Of these, calcium and magnesium play an important role in strengthening the cell wall. Although peaches (Prunus Persica) are highly preferred by consumers, they ripen quickly and become soft over a relatively short period of time after harvesting, making them difficult to transport and store. In addition, the ripening process of peaches proceeds very quickly. In addition, cell walls are weakened during maturation, and various pathogens can easily grow, causing rapid decay. Therefore, yield loss occurs during long-term storage or transport. To increase the storage period, a method to delay softening action is required. One potential means to improve firmness is improve calcium and magnesium content as these elements make up and strengthen cell walls. However, calcium and magnesium are not readily absorbed by plants. In this study, the size of calcium and magnesium particles were reduced to less than 900 nm via grinding and their absorption rates were evaluated in the leaves of peach trees. When plant nutrients with a small particle size by nanotechnology were sprayed on peach trees, the content of calcium and magnesium was increased in the petioles, adaxial, abaxial, and leaf side. Therefore, a reduction in the particle size of calcium and magnesium increases the absorption rate in peach leaves.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3