Soybean (Glycine max L.) seed germination in response to waterlogging and cold climate: a review on the genetics and molecular mechanisms of resistance to the abiotic stress

Author:

Suo Rongzhen12,Sandhu Kulbir1,Wang Mingjiu2,You Frank3,Conner Robert1,Cober Elroy3ORCID,Hou Anfu1ORCID

Affiliation:

1. Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada

2. Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, Inner Mongolia, China

3. Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada

Abstract

Soybean ( Glycine max L.) is the most important legume crop in the world and provides protein and oil for human consumption and animal feed. Cold and waterlogging or flooding are abiotic stress that are commonly encountered during soybean germination in short-season growing conditions in the Northern latitudes. Imbibition of cold water during the germination disrupts the cell membranes and increases leakage of their contents and makes seeds vulnerable to biotic stress. The cold tolerance is associated with the ability of cells to avoid or repair the damage to their membranes and organelles, restoring membrane function and metabolism, and managing the reactive oxygen species generated during the process. Excess moisture impedes aerobic respiration by oxygen deprivation and increases the likelihood of soil-borne diseases further reducing the germination rate. Tolerance to waterlogging is associated with mechanisms that slow down the rate of water uptake and help maintain efficient anaerobic metabolism. The quantitative trait loci mapping, transcriptomics, and proteomic studies have revealed several genes and pathways that likely play a role in seed response to cold and waterlogging stress. This review discusses the effects of cold and waterlogging on soybean seed germination at the physiological level, describes the molecular mechanisms involved, and provides an overview of soybean waterlogging and cold tolerance research. The methodologies commonly used to study the molecular mechanisms controlling tolerance to waterlogging and cold stress are also reviewed and discussed.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3