Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat

Author:

William H M,Singh R P,Huerta-Espino J,Palacios G,Suenaga K

Abstract

Leaf (brown) and stripe (yellow) rusts, caused by Puccinia triticina and Puccinia striiformis, respectively, are fungal diseases of wheat (Triticum aestivum) that cause significant yield losses annually in many wheat-growing regions of the world. The objectives of our study were to characterize genetic loci associated with resistance to leaf and stripe rusts using molecular markers in a population derived from a cross between the rust-susceptible cultivar 'Avocet S' and the resistant cultivar 'Pavon76'. Using bulked segregant analysis and partial linkage mapping with AFLPs, SSRs and RFLPs, we identified 6 independent loci that contributed to slow rusting or adult plant resistance (APR) to the 2 rust diseases. Using marker information available from existing linkage maps, we have identified additional markers associated with resistance to these 2 diseases and established several linkage groups in the 'Avocet S' × 'Pavon76' population. The putative loci identified on chromosomes 1BL, 4BL, and 6AL influenced resistance to both stripe and leaf rust. The loci on chromosomes 3BS and 6BL had significant effects only on stripe rust, whereas another locus, characterized by AFLP markers, had minor effects on leaf rust only. Data derived from Interval mapping indicated that the loci identified explained 53% of the total phenotypic variation (R2) for stripe rust and 57% for leaf rust averaged across 3 sets of field data. A single chromosome recombinant line population segregating for chromosome 1B was used to map Lr46/Yr29 as a single Mendelian locus. Characterization of slow-rusting genes for leaf and stripe rust in improved wheat germplasm would enable wheat breeders to combine these additional loci with known slow-rusting loci to generate wheat cultivars with higher levels of slow-rusting resistance.Key words: Puccinia triticina, Puccinia striiformis, Triticum aestivum, bulked segregant analysis, single chromosome recombinant lines, linkage mapping, adult plant resistance.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3