Effects of band hybridization on electronic properties in tuning armchair graphene nanoribbons

Author:

Khatun M.11,Kan Z.11,Cancio A.11,Nelson C.11

Affiliation:

1. Department of Physics and Astronomy, Center for Computational Nanoscience, Ball State University, Muncie, IN 47306, USA.

Abstract

We explore a model of armchair graphene nanoribbons tuned by functionalizing the edge states. Edge modifications are modeled by changing the electronic energy of the edge states in specific periodic patterns. The model can be considered to mimic a controlled doping process with different elements. The band structure, density of states, conductance, and local density of states are calculated, using the tight binding approach, Green’s function methodology, and the Landauer formula. The results show interesting behaviors, which are considerably different from the properties of the perfect nanoribbons. The hybridization of conducting bands with non-conducting bands, which appear perfectly flat in the perfect ribbon, opens up and modifies gaps in conductance near the Fermi level. One particular pattern of edge functionalization causes a strong, symmetric, and systematic band gap change about the Fermi level, modifying the electronic characteristics in the energy dispersion, density of states, local density of states, and conductance.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3