Harmonically trapped one-dimensional Fermi gas using the static fluctuation approximation

Author:

Al-Khzon H.A.1,Ghassib H.B.2,Al-Sugheir Mohamed K.34

Affiliation:

1. Physics Department, College of Science, Al Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia.

2. Department of Physics, The University of Jordan, Al Jamia Al Urduniyya, Amman, Jordan.

3. Department of Physics, The Hashemite University, Abdallah Ghosheh, Zarqa, Jordan.

4. Department of Physics, Yarmouk University, Shafiq Irshidat st, Irbid 21163, Jordan.

Abstract

A system of a finite number of harmonically trapped fermions in one dimension, in the presence of a static magnetic field, is studied within the framework of the static fluctuation approximation, for different repulsive and attractive potential strengths. Specifically, the thermodynamic properties of the system (the chemical potential, total energy, heat capacity, and entropy), as well as its magnetic properties (the magnetization and susceptibility), are calculated. It is observed that the system remains in an ordered phase for a small number of particles N, even at high temperatures T. Disorder sets in for large N, even at low T. The effect of the potential strength on the heat capacity is particularly tangible in the region bordering the quantum and classical regimes. The effect of the temperature (representing disorder) is directly opposite to that of the magnetic field (representing order), as expected on basic physical grounds. These features are consistent with experimental results.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3