6Pe—6Po transitions in boron-like ions with Z = 8–13

Author:

Zhang Jian1,Sun Yan2,Sang Cui Cui3,Yan Shuo2,Li Wen Yi2,Hu Feng2,Mei Mao Fei2,Liu Dong Dong2,Gou Bing Cong1

Affiliation:

1. School of Physics, Beijing Institute of Technology, Beijing 100081, China.

2. School of Mathematic and Physical Science, Xuzhou Institute of Technology, Xuzhou 221111, China.

3. Department of Physics, Qinghai Normal University, Xining, 810001, China.

Abstract

The energies, fine structure splittings, transition rates, and lifetimes of inner-shell excited sextet states 1s2s2p2nl, (n = 2–7; l = s, p, d) and 1s2p33p of the boron isoelectronic sequence (Z = 8–13) are investigated using the multi-configuration Rayleigh–Ritz variation method. The mass polarization effect and relativistic corrections are included by first-order perturbation theory. Configuration structures of the high-n inner-shell excited sextet series 6Se,o(m) and 6Pe,o(m) (m = 1–5) of boron-like Na6+ ion are assigned. The wavelengths and transition rates of electric-dipole transitions between 6Pe(m) and 6Po(m) (m = 1–5) states are calculated. The quantum electrodynamics (QED) effects and higher order relativistic corrections are also considered to obtain more accurate transition wavelengths. The predicted transition wavelengths agree well with the available theoretical and experimental data. The lifetimes for the inner-shell excited sextet states 6Pe(m) (m = 1–5) are also reported and discussed with the increase of nuclear charge number, Z. These theoretical data are useful for the identification of spectral lines in experiments and the design of XUV and soft X-ray lasers.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3