An improved scheme for the calculation of NMR chemical shifts in periodic systems based on gauge including atomic orbitals and density functional theory

Author:

Skachkov Dmitry1,Krykunov Mykhaylo1,Ziegler Tom1

Affiliation:

1. Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada.

Abstract

We report here on an improved first principles method that can determine NMR shielding tensors for periodic systems. Our scheme evaluates the shielding tensor as the second derivative of the total electronic energy with respect to a nuclear magnetic moment and an external magnetic field. Both the induced current density J(α) due to the first perturbation from the nuclear magnetic moment as well as the interaction of J(α) with the second perturbation in the form of an external magnetic field are evaluated analytically. Our approach is based on Kohn–Sham density functional theory and gauge-including atomic orbitals. It employs a Bloch basis set made up of Slater-type or numeric atomic orbitals and represents the Kohn–Sham potential fully without the use of effective core potentials. The method is implemented into the periodic program BAND. The new scheme represents an improvement over a previously proposed method in that use can be made of the zero-order Kohn–Sham orbitals from a calculation based on a primitive cell instead of a supercell. Further, J(α) is evaluated analytically rather than by a finite difference approach. The improvements reduce the required computational time by up to two orders of magnitude for three-dimensional systems. Such a reduction is made possible by the fact that we are using atomic centered basis functions. The new implementation is further able to take into account scalar relativistic effects within the zero-order regular approximation. Results from calculations of NMR shielding constants based on the present approach are presented for systems with one-, two-, and three-dimensional periodicity. The reported values are compared to experiment and results from the previously proposed scheme.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3