Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers

Author:

Kudo H.,Cheng K.-J.,Costerton J. W.

Abstract

The presence of methylellulose prevents the attachment of cellulolytic rumen bacteria to cellulose fibers. The addition of methylcellulose to pure cultures of these organisms in which the cells are already adherent to cellulose causes their detachment from this insoluble substrate and the inhibition of their growth. Methylcellulose is not used as a carbon source by these organisms and has no effect on their growth when glucose and cellobiose are the carbon sources. Attached cells of Bacteroides succinogenes orient themselves in the plane of the individual cellulose fibers and their methylcellulose-induced detachment, which is complete (almost 100%), leaves grooves where the cellulose has been digested. Attached cells of Ruminococcus albus colonize the cellulose in a looser and less regular pattern and their almost complete methylcellulose-induced detachment leaves less regular pits in the cellulose surface. On the other hand, attached cells of Ruminococcus flavefaciens colonize the cellulose surface in a random orientation by means of a discernible exopolysaccharide network, and their less complete methylcellulose-induced detachment leaves no residual impressions on the cellulose surface. These data support the suggestion that bacterial attachment is necessary for the digestion of highly ordered crystalline cellulose, and that cellulolytic species differ in the nature of their attachment to this insoluble substrate and in the nature of their enzymatic attack. Methylcellulose is an effective agent for detaching major rumen cellulolytic bacteria from their cellulosic substrate.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3