Bacterial endophytes in cotton: location and interaction with other plant-associated bacteria

Author:

Quadt-Hallmann A.,Hallmann J.,Kloepper J. W.

Abstract

Investigations were conducted to determine if biological control agent Pseudomonas fluorescens 89B-61 could colonize cotton tissues systemically and if internal colonization by a known endophytic bacterium, Enterobacter asburiae JM22, was influenced by the presence of other plant-associated bacteria. Following seed treatment, Pseudomonas fluorescens 89B-61 colonized cotton roots both externally and internally at mean population densities of 8.7 × 105 CFU/g and 1.1 × 103 CFU/g, respectively. However, bacteria were not detected in cotyledons, leaves, or stems. After inoculation onto leaves, Pseudomonas fluorescens 89B-61 established a mean internal population density of 1.6 × 104 CFU/g leaf tissue. Following stem injection, Pseudomonas fluorescens 89B-61 did not colonize roots or leaves. Pseudomonas fluorescens 89B-61 was localized on the root surface concentrated in grooves between epidermal cells, below collapsed epidermal cells, and in intercellular spaces close to the root epidermis, as identified by immunogold labeling of the bacterial membrane. Combined application of E. asburiae JM22 with another endophyte, Paenibacillus macerans Tri2-10, resulted in significantly lower internal populations of E. asburiae JM22 compared with treatment with E. asburiae JM22 alone. However, when coinoculated with a rhizosphere colonist, Micrococcus agilis strain 2RD-11, the colonization density of E. asburiae JM22 was not negatively affected. The results suggest that the internal colonization of cotton by bacteria with biological control activity may be an important aspect in their capacity to protect host plants against plant pathogens. The extent of internal colonization was shown to be influenced by other bacterial colonists.Key words: endophytic bacteria, location, interaction, cotton.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3