Abstract
An extended variational principle providing the equations of motion for a system consisting of interacting classical, quasiclassical, and quantum components is presented, and applied to the model of bilinear coupling. The relevant dynamical variables are expressed in the form of a quantum state vector that includes the action of the classical subsystem in its phase factor. It is shown that the statistical ensemble of Brownian state vectors for a quantum particle in a classical thermal environment can be described by a density matrix evolving according to a nonlinear quantum Fokker–Planck equation. Exact solutions of this equation are obtained for a two-level system in the limit of high temperatures, considering both stationary and nonstationary initial states. A treatment of the common time shared by the quantum system and its classical environment as a collective variable, rather than as a parameter, is presented in the Appendix. PACS Nos.: 03.65.–w, 03.65.Sq, 05.30.–d, 45.10.Db
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献