Association of the positive inotropic action of ouabain with a second species of digitalis receptors

Author:

Kurobane Itsuo,Nandi Dhirendra L.,Okita George T.

Abstract

Studies were conducted to determine whether Na–K ATPase or a second species of digitalis receptors in canine cardiac sarcolemma membrane preparations is associated with the positive inotropic action of nontoxic concentrations of ouabain. [3H]ouabain association and dissociation experiments using highly enriched sarcolemma preparations from canine ventricle indicate the presence of two species of ouabain binding receptors. Ouabain binding to Na–K ATPase of the sarcolemma preparation requires supporting ligands and is characterized by fast association and very slow dissociation in vitro. The second species of digitalis receptor does not require supporting ligands for ouabain binding and is characterized by slow association and fast dissociation. To determine which species of digitalis receptor is associated with the positive inotropic action of digitalis, ouabain washout experiments were conducted using various isolated canine myocardial preparations. Washout of the positive inotropic effects of 1.2–2.4 × 10−7 M ouabain gave half-life values of 1.5–2.0 h for the various myocardial preparations. [3H]ouabain dissociation from the second species of digitalis receptors gave half-life values of 1.7–1.8 h, whereas dissociation from the sarcolemma Na–K ATPase gave half-life values of 8.9–9.3 h for the various sarcolemma preparations utilized. Therefore, based on similarities in half-life values between ouabain inotropy and [3H]ouabain dissociation from the second class of digitalis receptors, it is postulated that the positive inotropic action of digitalis glycosides is associated with the second species of digitalis receptors in the sarcolemma and not with the digitalis inhibitory receptor of Na–K ATPase for nontoxic concentrations of digitalis.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3