Soil nitrogen availability influences seasonal carbon allocation patterns in sugar maple (Acersaccharum)

Author:

Burke Marianne K.,Raynal Dudley J.,Mitchell Myron J.

Abstract

The influence of soil N availability on growth, on seasonal C allocation patterns, and on sulfate-S content in sugar maple seedlings (Acersaccharum Marsh.) was tested experimentally. Relative to controls, the production of foliage doubled in response to high N availability, and the production of foliage, stems, coarse roots, and fine roots was halved in response to N deprivation. The period of foliage production was lengthened by fertilization and the period of fine root production was shortened by N deprivation compared with controls. In August, a shift in priority C allocation from foliage to roots occurred in the N-deprivation treatment. Therefore, during this month alone, the shoot to root ratio was greater in fertilized plants (1.0) than in N-deprived plants (0.5). Allocation to storage reserves was highest in N-deprived and lowest in fertilized plants (average 160 vs. 125 mg glucose/g biomass produced), and storage in roots of unfertilized plants commenced earlier (August) than in fertilized plants (after September). This resulted in unfertilized plants having higher fine root starch concentrations (5.2%) than fertilized plants (4.0%) in December, although sugar concentrations were similar (5.7%). The lengthened season of shoot growth and the low starch to sugar ratios in fine roots of fertilized plants are symptoms consistent with a higher risk of frost injury and microbial pathogen infection. Although soil N availability did not influence the sulfate-S content in foliage, N deprivation resulted in higher organic S to N ratios. This suggests that more S-containing proteins are produced when N availability is poor.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3