Measurement of hydraulic conductivity in oil sand tailings slurries

Author:

Suthaker Nagula N,Scott J Don

Abstract

Fine tails, the resulting fine waste from oil sand processing, undergoes large-strain consolidation in tailings ponds. Its consolidation behaviour must be analyzed using a large-strain consolidation theory, which requires the determination of the relationship between the void ratio and hydraulic conductivity. Conventional measurement techniques are not suitable for fine tails, and a special slurry consolidometer, with a clamping device to prevent seepage-induced consolidation, was designed to determine the hydraulic conductivity of the fine tails and nonsegregating fine tails – sand slurries. The hydraulic conductivity of slurries is not constant but decreases with time to a steady-state value. Hydraulic conductivity is also influenced by the hydraulic gradient and bitumen content. It is shown that a low hydraulic gradient, less than 0.2, is necessary to counteract the effect of the bitumen and to represent tailings pond conditions. The hydraulic conductivity of fine tails – sand mixes is controlled by the fines void ratio, hence, fines content. The hydraulic conductivity of chemically amended nonsegregating tailings can be lower than that of fine tails. However, acid–lime or acid – fly ash amended nonsegregating tailings have similar hydraulic conductivity values in terms of fines void ratio. The hydraulic conductivity of nonsegregating tailings appears to be governed by fines content and by the nature of the fines aggregation caused by the chemical additive. Key words: tailings, slurries, hydraulic conductivity, slurry consolidometer, nonsegregating tailings, oil sands.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3