Preferred orientation of ferromagnetic phases in rock-forming minerals: insights from magnetic anisotropy of single crystals

Author:

Hirt Ann M.11,Biedermann Andrea R.1

Affiliation:

1. Institute of Geophysics, Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zürich, Switzerland.

Abstract

In the early days of paleomagnetism, David Strangway was interested in understanding why igneous rocks are faithful recorders of the Earth’s magnetic field. He recognized that ferromagnetic (s.l.) grains that could be discerned by optical microscopy were too large to carry a stable remanent magnetization, and speculated whether fine-grained, ferromagnetic (s.l.) inclusions or exsolutions in silicate minerals are responsible. When these inclusions or exsolutions are randomly oriented, or the silicate hosts are randomly oriented in a rock, they can be a good recorder of the field. If these minerals, however, show an alignment within the silicate host, and the host is preferentially aligned due to flow structures or deformation, then the paleomagnetic direction and paleointensity could be biased. We examine the magnetic anisotropy arising from the ferromagnetic (s.l.) phases in silicate-host minerals. Single crystals of phyllosilicate, clinopyroxene, and calcite show most consistent ferrimagnetic fabric with relation to the minerals’ crystallographic axes, whereas olivine and feldspar display only a weak relationship. No discernable relationship is found between the ferrimagnetic anisotropy and crystallographic axes for amphibole minerals. Our results have implications when single crystals are being used for either studies of field direction or paleointensity or in cases where silicate minerals have a preferential orientation. Phyllosilicate minerals and pyroxene should be screened for significant magnetic anisotropy.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3