Petrophysical constraints on magnetic anomalies associated with metamorphic reactions in northern Saskatchewan, Canada

Author:

Webber Jeffrey R.12,Brown Laurie L.2,Williams Michael L.2

Affiliation:

1. Geology Program, Stockton University, Galloway, NJ 08205, USA.

2. Department of Geosciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA.

Abstract

The western Chipman domain of the east Athabasca mylonite triangle in northern Saskatchewan, Canada, displays a large positive aeromagnetic anomaly that is the result of retrograde magnetite production during exhumation. Petrologic, magnetic coercivity, and hysteresis analyses indicate that multidomain magnetite is the primary magnetic phase in rocks of the region. Measurements of magnetic susceptibility from the western Chipman domain document five orders of magnitude variation, while rocks from the eastern Chipman domain are paramagnetic. The distribution of Koenigsberger ratios is approximately a mixed bimodal lognormal distribution with peak ratios at 0.039 and 0.73, suggesting that magnetic susceptibility is more significant than remanent magnetization. However, remanent magnetization is an important contributor to total magnetization. Petrographic observations indicate that magnetite is primarily produced from the breakdown of hornblende. The consumption of hornblende is also texturally associated with the production of actinolite and the hydration-related breakdown of granulite facies mineral phases such as garnet and clinopyroxene. Based on the proximity of the positive aeromagnetic anomaly to the Cora Lake shear zone, late-stage deformation along the shear zone during exhumation of the east Athabasca mylonite triangle may have structurally controlled the infiltration of fluids resulting in the heterogeneous production of magnetite. These results document the utility of integrating aeromagnetic, petrologic, and rock magnetic data to transcend observational scales and better understand regional tectonometamorphic history.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3