Conditions and timing of low-pressure – high-temperature metamorphism in the Montresor Belt, Rae Province, Nunavut

Author:

Dziawa Carolyn1,Gaidies Fred1,Percival John2

Affiliation:

1. Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.

2. Geological Survey of Canada, Ottawa, ON K1A 0E8, Canada.

Abstract

Pressure–temperature–time (P–T–t) estimates for the Montresor Belt, obtained using phase equilibria and geospeedometry modelling integrated with in situ U–Th–Pb monazite geochronology, shed new light on the tectonometamorphic effects of the Snowbird phase of the Trans-Hudson orogeny. Typical metapelitic assemblages of the lower Montresor group consist of white mica, biotite, plagioclase, quartz, and andalusite, which in some rocks is partly or completely pseudomorphed by white mica. The observed assemblages reflect peak P–T conditions centring at approximately 575 °C and 3 kbar. Rocks with high bulk Fe/Mg contents contain compositionally zoned garnet, permitting the addition of further constraints on the conditions of metamorphism in the Montresor Belt: Core compositions of earliest-grown garnets indicate initial garnet crystallization at approximately 535 °C and 2.3 kbar, suggesting a nearly isobaric P–T path of prograde metamorphism with a gradient of approximately 50 °C·kbar–1. Chemical age-dating of monazite inclusions in garnet yields ages of ca. 1870 ± 9 to 1837 ± 9 Ma. Retrograde, pseudomorphic andalusite replacement by white mica at approximately 540 °C is inferred to have been controlled by variations in bulk rock chemistry. Morphologically corroded and chemically heterogeneous monazite adjacent to white mica pseudomorphs suggests that andalusite replacement took place at ca. 1792 ± 10 Ma, possibly associated with extension and movement along the detachment fault separating the upper and lower Montresor groups. Simulations of diffusion across chlorite- and biotite-filled cracks in garnet assumed to be coeval with andalusite replacement suggest that the rocks have experienced the retrograde event for at least 20 My.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3