Earth evolution and dynamics—a tribute to Kevin Burke

Author:

Torsvik Trond H.123,Steinberger Bernhard14,Ashwal Lewis D.3,Doubrovine Pavel V.1,Trønnes Reidar G.15

Affiliation:

1. Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0316 Oslo, Norway.

2. Geodynamics, Geological Survey of Norway (NGU), N-7491 Trondheim, Norway.

3. School of Geosciences, University of Witwatersrand (WITS), Johannesburg 2050, South Africa.

4. German Research Centre for Geosciences (GFZ), 14473 Potsdam, Germany.

5. Natural History Museum, University of Oslo, 0318 Oslo, Norway.

Abstract

Kevin Burke’s original and thought-provoking contributions have been published steadily for the past 60 years, and more than a decade ago he set out to resolve how plate tectonics and mantle plumes interact by proposing a simple conceptual model, which we will refer to as the Burkian Earth. On the Burkian Earth, mantle plumes take us from the deepest mantle to sub-lithospheric depths, where partial melting occurs, and to the surface, where hotspot lavas erupt today, and where large igneous provinces and kimberlites have erupted episodically in the past. The arrival of a plume head contributes to continental break-up and punctuates plate tectonics by creating and modifying plate boundaries. Conversely, plate tectonics makes an essential contribution to the mantle through subduction. Slabs restore mass to the lowermost mantle and are the triggering mechanism for plumes that rise from the margins of the two large-scale low shear-wave velocity structures in the lowermost mantle, which Burke christened TUZO and JASON. Situated just above the core–mantle boundary, beneath Africa and the Pacific, these are stable and antipodal thermochemical piles, which Burke reasons represent the immediate after-effect of the moon-forming event and the final magma ocean crystallization.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3