Petroleum generation and expulsion characteristics of Lower and Middle Jurassic source rocks on the southern margin of Junggar Basin, northwest China: implications for unconventional gas potential

Author:

Guo Jigang12,Pang Xiongqi12,Guo Fengtao12,Wang Xulong3,Xiang Caifu12,Jiang Fujie12,Wang Pengwei12,Xu Jing12,Hu Tao12,Peng Weilong12

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.

2. Research Center of Basin and Reservoir, China University of Petroleum, Beijing 102249, China.

3. Xinjiang Oilfield Company, PetroChina, Karamay, Xinjiang 834000, China.

Abstract

Jurassic strata along the southern margin of Junggar Basin are important petroleum system elements for exploration in northwest China. The Lower and Middle Jurassic source rock effectiveness has been questioned as exploration progresses deeper into the basin. These source rocks are very thick and are distributed widely. They contain a high total organic carbon composed predominantly of Type III kerogen, with some Type II kerogen. Our evaluation of source rock petroleum generation characteristics and expulsion history, including one-dimensional basin modeling, indicates that Jurassic source rocks are gas prone at deeper depths. They reached peak oil generation during the Early Cretaceous and began to generate gas in the Late Cretaceous. Gas generation peaked in the Paleogene–Neogene. Source rock shales and coals reached petroleum expulsion thresholds at thermal maturities of 0.8% and 0.75% vitrinite reflectance, respectively, when the petroleum expulsion efficiency was ∼40%. The petroleum generated and expelled from these source rocks are 3788.75 × 108 and 1507.55 × 108 t, respectively, with a residual 2281.20 × 108 t retained in the source rocks. In these tight reservoirs, a favorable stratigraphic relationship (where tight sandstone reservoirs directly overlie the source rocks) indicates short vertical and horizontal migration distances. This indicates the potential for a large, continuous, tight-sand gas resource in the Lower and Middle Jurassic strata. The in-place natural gas resources in the Jurassic reservoirs are up to 5.68 × 1012 − 15.14 × 1012 m3. Jurassic Badaowan and Xishanyao coals have geological characteristics that are favorable for coal-bed methane resources, which have an in-place resource potential between 3.60 × 1012 and 11.67 × 1012 m3. These Lower and Middle Jurassic strata have good shale gas potential compared with active US shale gas, and the inferred in-place shale gas resources in Junggar Basin are between 20.73 × 1012 and 113.89 × 1012 m3. This rich inferred conventional and unconventional petroleum resource in tight-sand, coal-bed, and shale gas reservoirs makes the deeper Jurassic strata along the southern margin of Junggar Basin a prospective target for future exploration.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Reference54 articles.

1. The effective source rocks in the north Cambay Basin, India

2. The Milk River Shallow Gas Pool: Role of the Updip Water Trap and Connate Water in Gas Production From the Pool

3. Bordenave, M.L., Esoitalie, J., Leolat, P., Ouidin, J.L., and Vandenbroucke, M. 1993. Screening techniques for source rock evaluation. In Applied Petroleum Geochemistry. Edited by M.L. Bordenave. Paris. pp. 219–277.

4. On the validity of the Pristane Formation Index

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3