Quaternary evolution of the Suluova Basin: implications on tectonics and palaeonvironments of the Central North Anatolian Shear Zone

Author:

Erturaç Mehmet Korhan12,Erdal Ozan3,Sunal Gürsel4,Tüysüz Okan3,Şen Şevket5

Affiliation:

1. Sakarya University, Department of Geography, 54187 Sakarya, Turkey.

2. Sakarya University Research, Development and Application Center (SARGEM-MALTA), 54187 Sakarya, Turkey.

3. İstanbul Technical University, Eurasia Institute of Earth Sciences, 34469, İstanbul, Turkey.

4. İstanbul Technical University, Department of Geological Engineering, 34469, İstanbul, Turkey.

5. Sorbonne Universités, CR2P-UMR 7202 CNRS-MNHN, 8 rue Buffon, 75005 Paris, France.

Abstract

The Suluova Basin is a prominent member of the wide transtensional Amasya Shear Zone located at the central part of the North Anatolian Shear Zone. This basin is crucial and provides well-resolved data to understand the evolution of transtensional tectonic zones as well as the morphological and paleoenvironmental changes of North Anatolia during the Quaternary. Analysis of detailed stratigraphical sections, faulting data, and mammal paleontology reveals that the Suluova Basin has started to evolve as a closed half-graben along the NW–SE-trending, SW-dipping basin bounding fault zone with normal slip in the early Quaternary. Initial sedimentation mode of the basin was dominated by alluvial fan facies associations. Progressive basin subsidence resulted in an expansion of a freshwater lake at the basin depocenter as faults propagated westwards. Further extensions in the basin were caused to initiate the E–W-trending southern tectonic boundary. Newly created accommodation space hosted a vast freshwater lake during the Calabrian (∼1.8–0.78 Ma) acting as a refugia for a rich faunal assemblage of large and small land mammals. The conditions prior to the onset of Middle Pleistocene (MIS19, ∼0.79 Ma) is marked with increasing regional erosion where paleo-Lake Suluova was captured by the regional river system. Synchronously, the next phase of the shear zone formation was introduced with E–W-trending dextral and NE–SW-trending sinistral strike-slip faults, cross-cutting the former basin structure, forming new depocenters. These faults are still active with noticeable seismic activity and comprise future risks for the major cities of the region.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3