A New Year’s Day icebreaker: icequakes on lakes in Alberta, Canada

Author:

Kavanaugh Jeffrey1,Schultz Ryan2,Andriashek Laurence D.2,van der Baan Mirko1,Ghofrani Hadi3,Atkinson Gail3,Utting Daniel J.2

Affiliation:

1. Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.

2. Alberta Geological Survey, 4th Floor Twin Atria Building, 4999-98 Ave., Edmonton, AB T6B 2X3, Canada.

3. Department of Earth Sciences, University of Western Ontario, London, ON N6A 5B7, Canada.

Abstract

Any process that causes a sudden brittle failure of material has the potential to cause earthquake-like seismic events. Cryoseisms represent an underreported class of seismic event due to their (often) small magnitudes. In this paper, we document the phenomenon of some of the largest magnitude lake-associated icequakes (ML 2.0) yet reported. These events occurred nearly simultaneously (within ∼2 h) on geographically separate lakes in Alberta, Canada, starting 1 January 2018. We conjecture that these events were caused by the sudden brittle failure of lake ice due to thermal expansion; the effects of the thermal expansion were compounded by the lack of insulating snow cover, high lake water levels, and a rapid onset of atmospheric warming. These factors also contributed to ice-jacking — a repeating process in which thermal contraction produces tensile cracks (leads) in lake ice that are then filled with water that is frozen during the cooling cycle. Thus, any subsequent thermal expansion must be accommodated by new deformation or brittle failure. This ice-jacking process caused creeping ground deformation after the initial brittle failure and again two weeks later following a second warming period. In many cases, the resulting ground deformation was significant enough to cause property damage.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3