New constraints on the genesis and geodynamic setting of the Wulong gold deposit, Liaodong Peninsula, northeast China: evidence from geology, geochemistry, fluid inclusions, and C–H–O–S–Pb isotopes

Author:

Cheng Xihui123,Xu Jiuhua3,Yang Fuquan2,Zhang Guorui4,Zhang Hui3,Bian Chunjing3,Xue Qingpo5

Affiliation:

1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, China.

2. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China.

3. University of Science and Technology Beijing, Beijing 100083, China.

4. Hebei GEO University, Shijiazhuang 050031, China.

5. Tianjin North China Geological Exploration Bureau, Tianjin 300170, China.

Abstract

The Wulong lode gold deposit is located in the Liaoning Province, northeast part of North China Craton. Gold ore bodies are mainly hosted in the Late Jurassic granite and structurally controlled by northeast-trending faults. Gold occurs in disseminated and auriferous quartz–sulfide veins and veinlets within hydrothermally altered rocks. Mineralization can be divided into three stages: (1) quartz–pyrite stage, (2) quartz–polymetallic sulfides stage, and (3) quartz–carbonate stage. Gold formed mainly in the middle stage. Quartz formed in the two earlier stages contains three compositional types of fluid inclusions, i.e., pure CO2, CO2–H2O and NaCl–H2O, but the late-stage minerals only contain NaCl–H2O inclusions. The inclusions in quartz formed in the early, main, and late stages yield total homogenization temperatures of 317–383 °C, 260–380 °C and 159–234 °C, respectively, with salinities of 5.14–9.44, 2.95–6.20, 1.23–4.34 wt% NaCl equivalent, respectively. Trapping pressures estimated from CO2–H2O inclusions are 200–390 MPa in the main stage. Fluid boiling and immiscibility caused rapid precipitation of sulfides and gold. Through immiscibility and inflow of meteoric water, the ore-forming fluid system evolved from CO2-rich to CO2-poor in composition, and from magmatic to meteoric, as indicated by δ18Owater values (4.5‰–7.3‰). The carbon (−12.2‰ to −11.5‰), sulfur (0.9‰–2.6‰), and lead isotope (207Pb/204Pb of 15.606–15.618) compositions suggest the host rocks to be a significant source of ore metals. Integrating the data obtained from the studies including regional geology, ore geology, fluid inclusion, and C–H–O–S–Pb isotope geochemistry, we conclude that the Wulong deposit is a decratonization gold deposit formed during lithospheric thinning associated with destruction of the North China Craton triggered by the subduction of the Paleo-Pacific Oceanic plate in the Early Cretaceous.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3