Cenozoic uplift of the Central Andes in northern Chile and Bolivia—reconciling paleoaltimetry with the geological evolution

Author:

Lamb Simon11

Affiliation:

1. Institute of Geophysics, Victoria University of Wellington, Wellington, New Zealand.

Abstract

The Cenozoic geological evolution of the Central Andes, along two transects between ∼17.5°S and 21°S, is compared with paleo-topography, determined from published paleo-altimetry studies. Surface and rock uplift are quantified using simple 2-D models of crustal shortening and thickening, together with estimates of sedimentation, erosion, and magmatic addition. Prior to ∼25 Ma, during a phase of amagmatic flat-slab subduction, thick-skinned crustal shortening and thickening (nominal age of initiation ∼40 Ma) was focused in the Eastern and Western Cordilleras, separated by a broad basin up to 300 km wide and close to sea level, which today comprises the high Altiplano. Surface topography at this time in the Altiplano and the western margin of the Eastern Cordillera appears to be ∼1 km lower than anticipated from crustal thickening, which may be due to the pull-down effect of the subducted slab, coupled to the overlying lithosphere by a cold mantle wedge. Oligocene steepening of the subducted slab is indicated by the initiation of the volcanic arc at ∼27–25 Ma, and widespread mafic volcanism in the Altiplano between 25 and 20 Ma. This may have resulted in detachment of mantle lithosphere and possibly dense lower crust, triggering 1–1.5 km of rapid uplift (over ≪5 Myrs) of the Altiplano and western margin of the Eastern Cordillera and establishing the present day lithospheric structure beneath the high Andes. Since ∼25 Ma, surface uplift has been the direct result of crustal shortening and thickening, locally modified by the effects of erosion, sedimentation, and magmatic addition from the mantle. The rate of crustal shortening and thickening varies with location and time, with two episodes of rapid shortening in the Altiplano, lasting <5 Myrs, that are superimposed on a long-term history of ductile shortening in the lower crust, driven by underthrusting of the Brazilian Shield on the eastern margin.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3