A younger glacial Lake Iroquois in the Lake Ontario basin, Ontario and New York: re-examination of pollen stratigraphy and radiocarbon dating

Author:

Lewis C.F.M.1,Anderson T.W.2

Affiliation:

1. Geological Survey of Canada, Natural Resources Canada, 1 Challenger Drive, P.O. Box 1006, Dartmouth, NS B2Y 4A2, Canada.

2. Geological Survey of Canada, Natural Resources Canada, 601 Booth St., Ottawa, ON K1A 0E8, Canada.

Abstract

Revision of palynochronologic and radiocarbon age estimates for the termination of glacial Lake Iroquois, mainly based on a currently accepted younger determination of the key Picea–Pinus pollen transition, shows agreement with recently established constraints for this late glacial event in the Lake Ontario basin at 13 000 cal years BP. The date of emergence or isolation of small lake basins reflects the termination of inundation by glacial lake waters. The increasing upward presence of plant detritus and the onset of organic sedimentation marks the isolation level in the sediments of a small lake basin. The upward relative decline and cessation of pollen from trees such as Pinus, Quercus, and other thermophilous hardwoods that were wind transported long distances from southern areas also mark the isolation of inundated small lake basins by the declining water level of Lake Iroquois as local vegetation grew and local pollen overwhelmed long-distance-transported pollen. Re-examination of data in small lake basins north of Lake Ontario using the above criteria shows that the age range for the termination of Lake Iroquois derived from these data overlaps other age constraints. These constraints are based on a varve-estimated duration of post-Iroquois phases before incursion of the Champlain Sea, a newly discovered late ice advance into northern New York State, and the age of a mastodon at Cohoes, New York. The new age (13 000 cal years BP) for Lake Iroquois termination is significantly younger than the previous estimate of 11 800 14C (13 600 cal) years BP.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Reference44 articles.

1. Amante, C., and Eakins, B.W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. [accessed 14 September 2017.] 10.7289/v5c8276m.

2. Anderson, T.W. 1987. Terrestrial environments and age of the Champlain Sea based on pollen stratigraphy of the Ottawa Valley-Lake Ontario region. In Quaternary Geology of the Ottawa Region, Ontario and Quebec. Edited by R.J. Fulton. Geological Survey of Canada Paper 86-23, Ottawa ON. pp. 31–42.

3. A new water-level history for Lake Ontario basin: evidence for a climate-driven early Holocene lowstand

4. Holocene history of forest trees in southern Ontario

5. Marine and freshwater beaches of Ontario

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3