Landform signature of the Laurentide and Cordilleran ice sheets across Alberta during the last glaciation

Author:

Atkinson Nigel1,Utting Daniel J.1,Pawley Steven M.1

Affiliation:

1. Alberta Geological Survey, 4th Floor Twin Atria Building, 4999-98 Ave., Edmonton, AB T6B 2X3, Canada.

Abstract

Government geological survey maps and research publications have portrayed the distribution of glacial landforms associated with the advance and retreat of the Laurentide and Cordilleran ice sheets across Alberta at a local, regional, and continental scale. To date, this information has not been systematically synthesized into a single compilation at a consistent scale. Although this original work provided valuable information to constrain reconstructions of former ice sheet extent, configuration, and flow geometry, its derivation primarily from the interpretation of aerial photographs and the Shuttle Radar Topography Mission 90 m digital elevation model (DEM) may result in methodological inconsistencies and spatial biases. These biases, together with challenges associated with geomorphic mapping in densely forested areas of western and northern Alberta limit the usefulness of previous mapping when applied to inversion-based ice sheet reconstructions, which have specific input data demands. Recently, light detection and ranging (LiDAR) DEMs have become increasingly available throughout Alberta. Hill-shaded imagery of these data provides unprecedented geomorphic detail beneath the forest cover and reveals that that the glacial geomorphology of northern and western Alberta is more complex than previously recognized. In this paper, we describe the methodology and geomorphic criteria used to produce a glacial landform map of Alberta using previously published data, supplemented by comprehensive new analysis of high-resolution (2–25 m) DEMs. These include 306 624 km2 of LiDAR imagery, with which it is now possible to verify and where necessary augment previous mapping, particularly across areas with a dense forest cover.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3