The history of the core dynamos of Mars and the Moon inferred from their crustal magnetization: a brief review

Author:

Arkani-Hamed Jafar11

Affiliation:

1. Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; Department of Earth and Planetary Sciences, McGill University, Montreal, QC H3A 0E8, Canada.

Abstract

The core dynamos of Mars and the Moon have distinctly different histories. Mars had no core dynamo at the end of accretion. It took ∼100 Myr for the core to create a strong dynamo that magnetized the martian crust. Giant impacts during 4.2–4.0 Ga crippled the core dynamo intermittently until a thick stagnant lithosphere developed on the surface and reduced the heat flux at the core–mantle boundary, killing the dynamo at ∼3.8 Ga. On the other hand, the Moon had a strong core dynamo at the end of accretion that lasted ∼100 Myr and magnetized its primordial crust. Either precession of the core or thermochemical convection in the mantle or chemical convection in the core created a strong core dynamo that magnetized the sources of the isolated magnetic anomalies in later times. Mars and the Moon indicate dynamo reversals and true polar wander. The polar wander of the Moon is easier to explain compared to that of Mars. It was initiated by the mass deficiency at South Pole Aitken basin, which moved the basin southward by ∼68° relative to the dipole axis of the core field. The formation of mascon maria at later times introduced positive mass anomalies at the surface, forcing the Moon to make an additional ∼52° degree polar wander. Interaction of multiple impact shock waves with the dynamo, the abrupt angular momentum transfer to the mantle by the impactors, and the global overturn of the core after each impact were probably the factors causing the dynamo reversal.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3