Hierarchical clustering of pit crater chains on Venus

Author:

Davey S.C.1,Ernst R.E.12,Samson C.1,Grosfils E.B.3

Affiliation:

1. Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.

2. Ernst Geosciences, 43 Margrave Avenue, Ottawa, ON KIT 3Y2, Canada.

3. Geology Department, Pomona College, 185 E 6th Street, Claremont, CA 91711, USA.

Abstract

Composed of a series of circular to elliptical bowl-shaped depressions, pit crater chains are common on the surface of many of our solar system’s terrestrial planets and moons. Using Magellan synthetic aperture radar (SAR) images, four areas of Venus are examined in which a total of 354 pit crater chains are found: Ganiki Planitia (180°E–210°E, 25°N–50°N), Ulfrun Regio (200°E–240°E, 0°N–25°N), Themis Regio (270°E–300°E, 25°S–40°S), and Idunn Mons (205°E–225°E, 35°S–55°S). A study of the distribution of these pit crater chains at regional and local scales reveals hierarchical clustering. On a regional scale, pit crater chain clusters are associated with graben–fissure systems that are radiating (associated with volcano-tectonic features), circumferential (associated with coronae), and linear (with uncertain volcano-tectonic genesis). At a local scale, pit crater chains are found with marked restriction to particular portions of graben–fissure systems. We conclude that this hierarchical clustering is an indication that both an extensional process and a lithological control contribute to the formation of pit crater chains. Specifically, we propose that pit crater chain formation on Venus occurs in poorly welded volcaniclastic material (e.g., shield plains material unit) that has been crosscut by graben–fissure system(s). Only portions of the shield plains material unit may have sufficient thickness of volcaniclastic material, thus explaining the lack of a co-extensive relationship. Additionally, pit crater chains in other map units may be explained by shallow burial of the volcaniclastic material.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3