Geochemical constraints on Eocene–Miocene geodynamic and magmatic evolution of the Varan-Naragh area, Urumieh-Dokhtar Magmatic Arc, Iran

Author:

Zheira Ghosoun11,Masoudi Fariborz11,Rahimzadeh Bahman11

Affiliation:

1. Department of Minerals & Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran.

Abstract

Two different types of igneous rock formed during separate Cenozoic magmatic phases in the Varan-Naragh area in the central part of the Urumieh-Dokhtar Magmatic Arc (UDMA) of Iran as a part of the Alpine-Himalayan system. The first phase comprises late Eocene – early Oligocene Naragh gabbroic rocks (Ns), and the second phase is characterized by the emplacement of both volcanic and plutonic rocks of the early Miocene. Both phases display moderate enrichment of large rare earth elements and depletion of high field strength elements coupled with negative Nb, Ti, and P anomalies, indicative of subduction-related magmatic events within an active continental margin. Initial values of 87Sr/86Sr and εNdT are 0.70684 and +0.15 and 0.70560–0.70654 and +2.55 to +3.49 for Ns and early Miocene intrusive and volcanic rocks, respectively. Comparisons of rare earth element patterns and mantle-like isotopic ratios suggest that Ns mafic and early Miocene magmatic rocks were derived from partial melting of a common subcontinental lithospheric mantle. Geochemical and isotopic ratios of Ns gabbroic rocks, in combination with the data related to other coeval and proximal mafic-intermediate intrusions (such as Nashalj), suggest enrichment of the lithospheric mantle by slab-derived fluids with a minor subducted sediment melt. The low εNdT of Ns gabbroic rocks can reflect involvement of slab-derived components. The geochemical similarity and the close spatial and temporal association of Varan intrusive and volcanic rocks suggest a common petrogenetic relationship. Geochemical, isotopic, and geochronological evidence from the region indicate three major phases of igneous activity in the Kashan magmatic segment of the central UDMA during late Eocene to Miocene, resulting in complex tectonic regime transition from compressional subduction to extensional post-collisional settings. Integrated with published studies, the new results support a model suggesting that subduction-related magmatic activity was still influencing the central UDMA in the early Miocene time and are also consistent with the notion of oblique and diachronous collision along the northeast margin of the Arabia plate.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3