Salt tectonism and distribution of brackish-water trace fossils in the Cretaceous McMurray Formation, Athabasca Oil Sands, Alberta Foreland Basin

Author:

Broughton Paul L.11

Affiliation:

1. Broughton & Associates, P.O. Box 6976, Calgary, AB T2P 2G2, Canada.

Abstract

A proposed salt tectonism-saline seep model provides a novel alternative to the two widely accepted but irreconcilable depositional models for middle McMurray Formation strata of the Lower Cretaceous Athabasca Oil Sands deposit. Established interpretations of a fluvial axial channel belt along the eastern Alberta Foreland Basin contrast with a hundreds-of-kilometres long estuarine marine–fluvial transition zone setting that was characterized by brackish-water trace fossil laden beds. The architecture of a highly sinuous fluvial meander channel belt with bank-full depths of 30–40 m furthermore is not compatible with an estuary having a tens-of-metres thick salt wedge extending hundreds-of-kilometres upstream. This new model proposes that the removal of the underlying 100 m thick Middle Devonian salt section occurred across thousands of square kilometres and resulted in voluminous saline seeps up-section into river channel fills of the middle McMurray Formation. Southward transgression by a Boreal Sea tongue terminated fluvial lower McMurray Formation deposition, and transported brackish-water larvae inland along the tide-impacted backwater length. This zoology was sustained along the fluvial channel belt by the saline seeps that elevated salinity levels in channel muds as the fluvial system dominance reasserted. Brackish-water macroinvertebrates rapidly adapted to new terrestrial food sources in these fluvial channels, precluding the necessity for a salt wedge to have extended inland for hundreds of kilometres. This research presents the first quantitative analysis of the McMurray Formation trace fossil distribution patterns. Quaternary saline surface seep trends are proposed to represent intermittent seepage up-section since the Early Cretaceous.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3