The thermal structure of the central Nova Scotia Slope (eastern Canada): seafloor heat flow and thermal maturation models

Author:

Negulic Eric1,Louden Keith E.2

Affiliation:

1. Department of Earth Sciences, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada.

2. Department of Oceanography, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada.

Abstract

The thermal history and maturation potential of the central Scotian Slope is constrained using a combination of 47 recently acquired seafloor heat flow measurements, two-dimensional (2D) seismic reflection data, available well data, simple lithospheric rift models, and thermal and petroleum systems modelling. Consistent heat flow values of 41–46 mW·m−2 were measured seaward of the salt diapiric province and across the slope away from the influence of salt structures. Significant but highly variable increases in heat flow were measured for stations overlying salt diapiric structures, reaching values upwards of 72 mW·m−2. Simple models of conductive heat transfer with static salt geometries constrained from reflection profiles indicate that two of the four models fit the data, whereas two indicate much higher values suggestive of additional, convective effects. Dynamic 2D thermal models were developed to incorporate the effects of lithospheric rifting, crustal stretching, and radiogenic heat production in the sediment and basement. These models help constrain the hydrocarbon maturation potential of the central Scotian Slope, where deep borehole data are lacking. Our results suggest that a potential Late Jurassic source rock interval rests primarily within the late oil window and that salt structures act primarily to reduce maturation in the adjacent deep sediment layers.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3