Geochemistry of Late Ordovician dalmanelloid brachiopods from Laurentia: testing the effects of paleolatitudinal gradient

Author:

Azmy Karem1,Jin Jisuo2

Affiliation:

1. Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada.

2. Department of Earth Sciences, University of Western Ontario, London, ON N6A 5B7, Canada.

Abstract

Dalmanelloid brachiopod shells were collected from the Upper Ordovician Lexington Formation (lower Katian) of Kentucky, Sheguindah Shale (middle Katian) on Manitoulin Island, Ontario, and the Stony Mountain Formation (upper Katian) in the Winnipeg area, Manitoba. They were investigated to test the hypothesis of paleo-latitudinal zonation of the shelly benthos. A multi-technique approach was applied to evaluate the petrographic and geochemical (isotopic and elemental) preservation of the secondary layer of shells. Preliminary conventional microscopy, cathodoluminescence (CL), and scanning electron microscopy (SEM) confirmed the retention of primary shell ultrastructure (prismatic low-Mg calcite). The geochemical diagenesis proxies (e.g., Sr, Mn, Fe, and ΣREE) show insignificant correlations with the δ18O and δ13C values, thus supporting the preservation of at least near-primary geochemical compositions. Among the three lots of shells, the mean δ18O value is the highest in those from the Lexington Formation (–4.5‰ ± 0.3‰ VPDB), lowest from the Stony Mountain Formation (–6.8‰ ± 0.4‰ VPDB), and intermediate from the Sheguindah Shale (–6.0‰ ± 0.8‰ VPDB). The relative gradient in δ18O increase is in agreement with the paleo-latitudinal gradient, with Kentucky in subtropical, southern Ontario in mid-tropical, and southern Manitoba in subequatorial latitudes. The Lexington Formation shells also have the highest mean δ13C value (0.8‰ ± 0.2‰ VPDB) and relatively high P contents (170 ± 27 ppm), suggesting higher organic productivity, which is consistent with previous interpretation of frequent upwelling of nutrient-rich cool waters along the southeastern margin of Laurentia during the Katian. The Lexington shells also have a lower mean Th/U (0.6 ± 0.6), which is consistent with blooming organic productivity that likely led to more consumption of oxygen in the water column.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3