Author:
Le X Chris,Pavski Victor,Wang Hailin
Abstract
The combination of affinity recognition, capillary electrophoresis (CE), laser-induced fluorescence (LIF), and fluorescence polarization for the ultrasensitive determination of compounds of biological interest is described. Competitive immunoassays using CELIF eliminate the need for fluorescently labeling trace analytes of interest and are particularly useful for determination of small molecules, such as cyclosporine, gentamicin, vancomycin, and digoxin. Fluorescence polarization allows for differentiation of the antibody-bound from the unbound small molecules. Noncompetitive affinity CELIF assays are shown to be highly effective in the determination of biomarkers for DNA damage and HIV-1 infection. An antibody (or aptamer) is used as a fluorescent probe to bind with a target DNA adduct (or the reverse transcriptase of the HIV-1 virus), with the fluorescent reaction products being separated by CE and detected by LIF. Aptamers are attractive affinity probes for protein analysis because of high affinity, high specificity, and the potential for a wide range of target proteins. Fluorescence polarization provides unique information for studying molecular interactions. Innovative integrations of these technologies will have broad applications ranging from cancer research, to biomedical diagnosis, to pharmaceutical and environmental analyses.Key words: capillary electrophoresis, laser-induced fluorescence, fluorescence polarization, immunoassay, affinity probes, antibodies, aptamers, DNA damage, toxins, therapeutic drugs.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献