Author:
Liu Zhi-Wu,Wang Richard R.-C.
Abstract
The objective of this study is to elucidate genome constitutions of Thinopyrum curvifolium (Lange) D.R. Dewey, T. scirpeum (K. Presl) D.R. Dewey, T. distichum (Thunb.) A. Löve, and T. junceum (L.) A. Löve. Hybrids of T. sartorii (Boiss. &Heidr.) A. Löve with T. scirpeum and T. junceum, as well as the hybrid between T. curvifolium and Pseudoroegneria geniculata ssp. scythica (Nevski) A. Löve, were made and chromosome pairing at metaphase I was studied. The karyotype analyses of mitotic cells stained by aceto-orcein were conducted for both hybrids and the four target species. The Giemsa C-banding following acetocarmine staining was carried out for the above species and the triploid hybrid T. curvifolium × T. bessarabicum (Savul &Rayss) A. Löve. Meiotic data indicate that all target species have two sets of the basic genome J, but they behave like true allopolyploids because of bivalentization. Karyotypes of T. curvifolium and its triploid hybrid with T. bessarabicum indicate that T. curvifolium contains two different versions of the Jb genome, designated as Jb3 and Jb4, rather than two Je genomes as previously believed. Thinopyrum scirpeum and T. elongatum (4x) have similar karyotypes. Both are segmental allotetraploids carrying two forms of the Je genome. Their genome formulae are Je2 Je3 and Je1 Je3, respectively. Thinopyrum distichum has a karyotype similar to T. junceiforme, which has the Jb2 Je2 genome formula. However, the two species differ in C-banding patterns, reflecting their geographical separation. Thinopyrum junceum is a hexaploid with two pairs of Jb2 genomes and one pair of the Je2 genome, and it has a C-banding pattern similar to that of T. junceiforme, which has one pair each of the Jb2 and Je2 genomes.Key words: genome, meiosis, karyotype, C-banding, Triticeae, Thinopyrum.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献