Nesting in close quarters: causes and benefits of high-density nesting behaviour in Painted Turtles (Chrysemys picta)

Author:

Kell S.J.1,Rollinson N.2,Brooks R.J.3,Litzgus J.D.1

Affiliation:

1. Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.

2. Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada.

3. Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

Abstract

Many oviparous reptiles nest in aggregations and with temporal synchrony. We hypothesized that these traits reflect attraction by conspecifics rather than limiting suitable habitat. We quantified whether Painted Turtles (Chrysemys picta (Schneider, 1783)) in Algonquin Park, Ontario, Canada, were nesting communally, identified cues females used to select nest sites, and tested whether hatching success was higher in spatially clustered nests. We found that nests were closer to one another than expected by chance (i.e., were clustered), but that individual nest-site selection was only weakly influenced by microhabitat characteristics. Survival of clustered nests (49%) was not significantly higher than that of solitary nests (39%). When turtle models were placed on the nesting embankment, females nested most often with the highest density of models. Given that reproductive lifespan is the major axis of fitness and that there was little benefit to nest survival in clustered nests, we suggest that clustering is related to females cueing to conspecific nests to expedite the nesting process and gain a good-quality nest site (chosen by the first nesting female in the cluster) while investing little energy in nest-site selection. This strategy may reduce time spent on land, thereby minimizing chances of dehydration, temperature stress, and adult depredation.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3