Adaptive divergence of lateral plate ultrastructure in threespine stickleback (Gasterosteus aculeatus)

Author:

Wertman Debra L.1ORCID,Reimchen Thomas E.1ORCID

Affiliation:

1. Department of Biology, University of Victoria, PO Box 1700, Victoria, BC V8W 2Y2, Canada

Abstract

The lateral plates of threespine stickleback ( Gasterosteus aculeatus Linnaeus, 1758) are well studied for their adaptive morphological responses to predators, yet it is unknown whether habitat influences plate ultrastructure. We investigated using scanning electron microscopy the lateral plate ultrastructure (tubercles and ridges) of stickleback ( N = 61 adult fish) from nine Haida Gwaii (coastal British Columbia, Canada) wild-type populations, two experimental transplants, and two lab-reared cohorts reared from source populations. Tubercle density, but not ridge density, differed significantly across habitat types and populations. Among wild-type fish, tubercle densities were greatest in dystrophic habitats containing predatory fish, and lowest in weakly dystrophic systems featuring bird–invertebrate predation and marine populations with diverse predatory fish. No differences in tubercle density were detected between source and transplant populations, despite major habitat shifts. Lab-reared fish exhibited significantly lower tubercle densities than their source populations (less than one generation). Tubercle density differences across habitat types may reflect adaptation to divergent predation regimes, with tooth-bearing predators selecting for denser tubercles that disperse point forces. Conservation of ridge density across populations suggests an essential function in dispersing forces applied to dorsal spines during predator manipulation. Lateral plate ultrastructure in threespine stickleback thus results from both heritable effects and developmental plasticity.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3