Abstract
Functional relationships, such as stock–recruitment curves, are generally estimated from time series data where natural "random" factors have generated both deviations from the relationship and also informative variation in the independent variables. Even in the absence of measurement errors, such natural experiments can lead to severely biased parameter estimates. For stock–recruitment models, the bias is misleading for management: the stock will appear too productive when it is low, and too unproductive when it is large. The likely magnitude of such biases can and should be determined for any particular case by Monte Carlo simulations.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
118 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献