Abstract
This report compares the double-layer noise expected for metal dislocations with the earlier analysis of semiconductor dislocations. In both cases we describe the asymmetric trapping of charge over an electrical double layer at the dislocation. The earlier reports describe how a 1/f spectrum should be observed, in the form of a truncated Lorentzian, if the double-layer voltage shows fluctuations greater than kT/q. This report describes the origin of a double layer at metal dislocations that fulfills the requirements. It shows why, despite the substantial difference in parameters, the noise predicted for metals is of the same magnitude (in terms of the Hooge parameter) as that predicted for semiconductors.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy