Aerobic training status does not attenuate prolonged sitting-induced lower limb vascular dysfunction

Author:

Garten Ryan S.11,Hogwood Austin C.11,Weggen Jennifer B.11,Fralin R. Carson11,LaRosa Kathryn11,Lee David11,Michael Austin11,Scott Matthew11

Affiliation:

1. Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.

Abstract

This study examined if the degree of aerobic training protects against the lower limb vascular dysfunction associated with a prolonged sitting bout. Ten young, aerobically trained (AT) and 10 young, untrained (UT) individuals completed a prolonged (3 h) sitting bout. Leg vascular function was measured prior to and at 1.5 and 3 h into the prolonged sitting bout using the passive leg movement (PLM) technique. PLM-induced hyperemia was significantly reduced from baseline at 1.5 and 3 h into the prolonged sitting bout in both groups when evaluated as peak change in leg blood flow from baseline (Δ LBF) (UT: 956 ± 140, 586 ± 80, and 599 ± 96 mL·min−1 at baseline, 1.5 h, and 3 h, respectively; AT: 955 ± 183, 789 ± 193, and 712 ± 131 mL·min−1 at baseline, 1.5 h, and 3 h, respectively) and LBF area under the curve (UT: 283 ± 73, 134 ± 31, and 164 ± 42 mL·min−1 at baseline, 1.5 h, and 3 h, respectively; AT: 336 ± 86, 242 ± 86, and 245 ± 73 mL·min−1 at baseline, 1.5 h, and 3 h, respectively), but no significant differences between groups were revealed. No significant correlations were observed when examining the relationship between maximal oxygen uptake (relative and absolute) and reductions in leg vascular function at 1.5 and 3 h into the prolonged sitting bout. This study revealed that aerobic training did not provide a protective effect against prolonged sitting-induced lower limb vascular dysfunction and further highlights the importance of reducing excessive sitting in all populations.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3