Improving hepatic mitochondrial biogenesis as a postulated mechanism for the antidiabetic effect ofSpirulina platensisin comparison with metformin

Author:

Oriquat Ghaleb A.1,Ali Mennatallah A.2,Mahmoud Shimaa A.3,Eid Rania M.H.M.4,Hassan Rania5,Kamel Maher A.3

Affiliation:

1. Faculty of Pharmacy and Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan.

2. Department of Pharmacology & Therapeutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, PO Box 37, Alexandria 21648, Egypt.

3. Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt.

4. Department of Physiology, Faculty of Medicine, Aswan University, Aswan 81528, Egypt.

5. Department of Biochemistry, Faculty of Physical Therapy, Pharos University in Alexandria, Alexandria 21648, Egypt.

Abstract

Various nutritional and medicinal potencies have been accredited to metabolites from the cyanobacteria, Spirulina platensis (Arthrospira platensis) sp. Hence, our study was designed to examine whether the Spirulina supplementation would possess beneficial effects in type 2 diabetes mellitus (T2DM) in comparison with metformin. High-fat diet/low-dose streptozotocin (HFD/STZ) model was adopted and the diabetic rats were orally treated with metformin (200 mg/kg) or Spirulina (250 or 500 or 750 mg/kg) for 30 days. Spirulina ameliorated the HFD/STZ-induced elevation of fasting blood glucose, insulin, and hepatic enzymes. Moreover, Spirulina successfully rectified disrupted serum lipid profile and exhibited an anti-inflammatory effect via tumor necrosis factor-α and adiponectin modulation. On the molecular level, Spirulina reduced the expression of hepatic sterol regulatory element binding protein-1c (SREBP-1c), confirming its lipotropic effect. Furthermore, Spirulina amended compromised hepatic mitochondrial biogenesis signaling by significantly increasing peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), mitochondrial transcription factor A (Tfam), and mitochondrial DNA (mtDNA) copy number. On almost all parameters, the highest dose of Spirulina showed the best effects, which were comparable to that of metformin. To our knowledge, our study is the first to attribute the various aspects of the effect of Spirulina to the SREBP-1c and PGC-1α/Tfam/mtDNA pathways in liver. The present results clearly proved that Spirulina modulated glucose/lipid profile and exhibited prominent anti-inflammatory properties through SREBP-1c inhibition and hepatic mitochondrial biogenesis enhancement. Thus, Spirulina can be considered as an add-on to conventional antidiabetic agents and might influence the whole dynamics of the therapeutic approaches in T2DM.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3