Affiliation:
1. Institute of Training Science and Sport Informatics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
2. Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
Abstract
The present study aimed to investigate the relationship between the mechanical load during resistance exercise and the elicited physiological responses. Ten resistance-trained healthy male subjects performed 1 set of resistance exercise each at 55%, 70%, and 85% of 1 repetition maximum for as many repetitions as possible and in 4 training modes: 4-1-4-1 (4 s concentric, 1 s isometric, 4 s eccentric, and 1 s isometric successive actions), 2-1-2-1, 1-1-1-1, and explosive (maximum velocity concentric). Mean concentric power and total concentric work were determined. Oxygen uptake (V̇O2) was measured during exercise and for 30 min post exercise. Total volume of consumed oxygen (O2 consumed) and excess post-exercise oxygen consumption (EPOC) were calculated. Maximum blood lactate concentration (LAmax) was also determined. V̇O2 exhibited a linear dependency on mean concentric power. Mean concentric power did not have a detectable effect on EPOC and LAmax. An augmentation of total concentric work resulted in significant linear increase of O2 consumed and EPOC. Total concentric work caused a significant increase in LAmax. In general, a higher mechanical load induced a larger physiological response. An increase in mean concentric power elicited higher aerobic energy turnover rates. However, a higher extent of total concentric work augments total energy cost covered by oxidative and (or) glycolytic pathways.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献