Can an automated sleep detection algorithm for waist-worn accelerometry replace sleep logs?

Author:

Barreira Tiago V.1,Redmond Jessica G.2,Brutsaert Tom D.1,Schuna John M.3,Mire Emily F.4,Katzmarzyk Peter T.4,Tudor-Locke Catrine5

Affiliation:

1. School of Education, Syracuse University, 820 Comstock Ave., Syracuse, NY 13244, USA.

2. Biology Department, Utica College, 1600 Burrstone Rd., Utica, NY 13505, USA.

3. College of Public Health and Human Sciences, Oregon State University, 1500 SW Jefferson St., Corvallis, OR 97331, USA.

4. Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808, USA.

5. Department of Kinesiology, University of Massachusetts Amherst, 30 Eastman Ln., Amherst, MA 01002, USA.

Abstract

The purpose of this study was to test whether estimates of bedtime, wake time, and sleep period time (SPT) were comparable between an automated algorithm (ALG) applied to waist-worn accelerometry data and a sleep log (LOG) in an adult sample. A total of 104 participants were asked to log evening bedtime and morning wake time and wear an ActiGraph wGT3X-BT accelerometer at their waist for 24 h/day for 7 consecutive days. Mean difference and mean absolute difference (MAD) were computed. Pearson correlations and dependent-sample t tests were used to compare LOG-based and ALG-based sleep variables. Effect sizes were calculated for variables with significant mean differences. A total of 84 participants provided 2+ days of valid accelerometer and LOG data for a total of 368 days. There was no mean difference (p = 0.47) between LOG 472 ± 59 min and ALG SPT 475 ± 66 min (MAD = 31 ± 23 min, r = 0.81). There was no significant mean difference between bedtime (2348 h and 2353 h for LOG and ALG, respectively; p = 0.14, MAD = 25 ± 21 min, r = 0.92). However, there was a significant mean difference between LOG (0741 h) and ALG (0749 h) wake times (p = 0.01, d = 0.11, MAD = 24 ± 21 min, r = 0.92). The LOG and ALG data were highly correlated and relatively small differences were present. The significant mean difference in wake time might not be practically meaningful (Cohen’s d = 0.11), making the ALG useful for sample estimates. MAD, which gives a better estimate of the expected differences at the individual level, also demonstrated good evidence supporting ALG individual estimates.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3