Small intestine barrier function failure induces systemic inflammation in monosodium glutamate-induced chronically obese mice

Author:

Nakadate Kazuhiko1,Hirakawa Tomoya1,Tanaka-Nakadate Sawako2

Affiliation:

1. Department of Basic Science, Educational and Research Center for Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.

2. Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880, Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan.

Abstract

Chronic obesity has increased worldwide, in conjunction with type 2 diabetes. Chronic obesity causes systemic inflammation that may result in functional deterioration of the gastrointestinal barrier. However, gastrointestinal conditions associated with chronic obesity have not been comprehensively investigated. The purpose of this study was to evaluate morphological changes in small intestine barrier structures during chronic obesity. A mouse model of chronic obesity induced by monosodium glutamate treatment was established. At postnatal week 15, pathological changes including in small intestinal epithelial cells were analyzed in chronically obese mice compared with controls. Numerous gaps were identified between small intestinal epithelial cells in chronically obese mice, and levels of both desmosomal and tight junction proteins were significantly lower in their small intestinal epithelial cells. Moreover, in chronically obese mice, a significant increase in the number of intestinal inflammatory cells, particularly macrophages, was observed; in addition, blood samples from the mouse model show an increase in markers of inflammation, tumor necrosis factor-alpha and interleukin-1-beta. These findings suggest that functional deterioration of adhesion structures between small intestinal epithelial cells causes gastrointestinal barrier function failure, leading to a rise in intestinal permeability to blood vessels and consequent systemic inflammation, characterized by macrophage infiltration.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3