The effect of cold ambient temperature and preceding active warm-up on lactate kinetics in female cyclists and triathletes

Author:

Morrissey Margaret C.12,Kisiolek Jacob N.2,Ragland Tristan J.2,Willingham Brandon D.2,Hunt Rachael L.2,Hickner Robert C.23,Ormsbee Michael J.23

Affiliation:

1. Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.

2. Institute of Sports Science and Medicine, Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.

3. Discipline of Biokinetics, Exercise and Leisure Sciences, University of KawaZulu-Natal, Durban 4014, South Africa.

Abstract

The aim of this study was to evaluate the effect of cold ambient temperature on lactate kinetics with and without a preceding warm-up in female cyclists/triathletes. Seven female cyclists/triathletes participated in this study. The randomized, crossover study included 3 experimental visits that comprised the following conditions: (i) thermoneutral temperature (20 °C; NEU); (ii) cold temperature (0 °C) with no active warm-up (CNWU); and (iii) cold temperature (0 °C) with 25-min active warm-up (CWU). During each condition, participants performed a lactate threshold (LT) test followed by a time to exhaustion trial at 120% of the participant’s peak power output (PPO) as determined during prior peak oxygen consumption testing. Power output at LT with CNWU was 10.2% ± 2.6% greater than with NEU, and the effect was considered very likely small (effect size (ES) = 0.59, 95%–99% likelihood). Power output at LT with CNWU was 4.2% ± 5.4% greater than with CWU; however, the effect was likely trivial (ES = 0.25, 75%–95% likelihood). At LT, there were no significant differences between interventions groups in oxygen consumption, blood lactate concentration, heart rate, or rating of perceived exertion. Time to exhaustion at 120% at PPO was 11% longer with CNWU than with CWU (ES = 0.62, respectively), and this effect was likely small. These findings suggest that power output at LT was higher in CNWU compared with NEU. Additionally, time to exhaustion at 120% of PPO was higher in CNWU compared with CWU and no different than NEU; these differences likely result in a small improvement in performance with CNWU versus CWU and NEU.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3