Effects ofSpirulina platensison lipid peroxidation, antioxidant defenses, and tissue damage in kidney of alloxan-induced diabetic rats

Author:

Gargouri Manel12,Hamed Houda1,Akrouti Amel1,Dauvergne Xavier2,Magné Christian2,El Feki Abdelfattah1

Affiliation:

1. Laboratory of animal Ecophysiology, Faculty of Sciences, University of Sfax, BP 3038, Sfax, Tunisia.

2. EA 2219 Géoarchitecture, Faculty of Sciences, University of Western Brittany, 6 Avenue V. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France.

Abstract

Chronic hyperglycemia in diabetes causes free radicals overproduction, which contributes to the development of diabetic nephropathy. In modern medicine, no satisfactory therapy is available to cure diabetes mellitus. In that context, we investigated the potential therapeutic action of spirulina-enriched diet on renal impairment and oxidative stress in diabetic rats. Diabetes was induced by a single subcutaneous injection of alloxan (120 mg·kg−1) in rats. Following alloxan treatment, male Wistar rats were fed daily with 5% spirulina-enriched diet or treated with insulin (0.5 IU·rat−1) for 3 weeks. Diabetes was associated with hyperglycemia, increase in renal oxidative parameters (lipid peroxidation, thiobarbituric-acid reactive substances, protein carbonyl and advanced oxidation protein products levels, changes in antioxidant enzyme activities), and nephropathology markers. The renal injury induced by alloxan was confirmed by histological study of the diabetic rat kidney. Treatment with spirulina or insulin significantly ameliorated renal dysfunction by reducing oxidative stress, while rats recovered normal kidney histology. Overall, this study indicates that spirulina is efficient in inhibiting hyperglycemia and oxidative stress induced by diabetes, and suggests that the administration of this alga may be helpful in the prevention of diabetic complications. This amelioration was even more pronounced than that caused by insulin injection.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3