Skeletal site-specific effects of endurance running on structure and strength of tibia, lumbar vertebrae, and mandible in male Sprague–Dawley rats

Author:

Bott Kirsten N.11,Sacco Sandra M.11,Turnbull Patrick C.11,Longo Amanda B.11,Ward Wendy E.11,Peters Sandra J.11

Affiliation:

1. Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.

Abstract

Bone microarchitecture, bone mineral density (BMD), and bone strength are affected positively by impact activities such as running; however, there are discrepancies in the magnitude of these effects. These inconsistencies are mainly a result of varying training protocols, analysis techniques, and whether or not the skeletal sites measured are weight bearing. This study’s purpose was to determine the effects of endurance running on sites that experience different weight bearing and load. Eight-week-old male Sprague–Dawley rats (n = 20) were randomly assigned to either a group with a progressive treadmill running protocol (25 m/min for 1 h, incline of 10%) or a nontrained control group for 8 weeks. The trabecular structure of the tibia, lumbar vertebra (L3), and mandible and the cortical structure at the tibia midpoint were measured using microcomputed tomography to quantify bone volume fraction (i.e., bone volume divided by total volume (BV/TV)), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and cortical thickness. BMD at the proximal tibia, lumbar vertebrae (L1–L3), and mandible was measured using dual energy X-ray absorptiometry. The tibia midpoint strength was measured by 3-point bending using a materials testing system. Endurance running resulted in superior bone structure at the proximal tibia (12% greater BV/TV (p = 0.03), 14% greater Tb.N (p = 0.01), and 19% lower Tb.Sp (p = 0.05)) but not at other sites. Contrary to our hypothesis, mandible bone structure was altered after endurance training (8% lower BV/TV (p < 0.01) and 15% lower Tb.Th (p < 0.01)), which may be explained by a lower food intake, resulting in less mechanical loading from chewing. These results highlight the site-specific effects of loading on the skeleton.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3