Is V̇O2 supressed during nonapnoeic facial submersion?

Author:

Anderson Sarah11,Chamberlain Maggie R.11,Musgrove Samantha11,Partusch Antonia11,Tice Keagan R.J.11,Thorp David B.11

Affiliation:

1. Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA.

Abstract

The mammalian dive response (DR) is described as oxygen-conserving based on measures of bradycardia, peripheral vasoconstriction, and decreased ventilation (V̇E). Using a model of simulated diving, this study examined the effect of nonapnoeic facial submersions (NAFS) on oxygen consumption (V̇O2). 19 participants performed four 2-min NAFS with 8 min of rest between each. Two submersions were performed in 5 °C water, 2 in 25 °C water. Heart rate (HR) was collected using chest strap monitors. A tube connected to the inspired port of a non-rebreathing valve allowed participants to breathe during facial submersion. Expired air was directed to a metabolic cart to determine V̇O2 and V̇E. Baseline (BL) HR, V̇O2, and V̇E values were determined by the average during the 2 min prior to facial submersion; cold shock response (CSR) values were the maximum during the first 30 s of facial submersion; and NAFS values were the minimum during the last 90 s of facial submersion. A 2-way repeated-measures ANOVA indicated that both HR and V̇E were greater during the CSR (92.5 ± 3.6 beats/min, 16.3 ± 0.8 L/min) compared with BL (78.9 ± 3.2 beats/min, 8.7 ± 0.4 L/min), while both were decreased from BL during the NAFS (60.0 ± 4.0 beats/min, 6.0 ± 0.4 L/min) (all, p < 0.05). HRCSR was higher and HRNAFS lower in 5 °C versus 25 °C water (p < 0.05), while V̇E was greater in 5 °C conditions (p < 0.05). V̇O2 exceeded BL during the CSR and decreased below BL during the NAFS (BL: 5.3 ± 0.1, CSR: 9.8 ± 0.4, NAFS: 3.1 ± 0.2 mL·kg−1·min−1, p < 0.05). The data illustrate that NAFS alone contributes to the oxygen conservation associated with the human DR.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3